

Why is this research necessary?

• Number of heavy floodings \bigwedge

- The Rhine: 400 500 million euro (1993)
- > 100 big floods: 25 billion euro (1998-2004),
	- 700 people 守, half million homeless

KU L

• Example in Belgium: **the Demer**

The Demer: a history of normalization and floodings

Measures taken in the past:

- **Normalization**
- **Dikes**

+ increasing urbanization in flood sensitive areas New vision on flood control/management

- Preservation of toration of the work of data for **Explorer Communications**
-

• Computer controlled management:

advanced three-position controller

WERCHTER

Not effective

BETEKOM

KU

The Demer: a history of normalization

and flooding

Objective:

MERIT INDUCT TICULUT **Figure 1999** Can Model Predictive Control be used for set-point control and flood control of river systems?

$\frac{1}{2}$ increasing urbanization in $\frac{1}{2}$ in $\$ **Approach:**

- \sim Ppisasiii 1. General modelling framework
- Preservation of the state of the state of the natural flood areas of σ 2. Find accurate approximate model
- Reservoirs er en die boorgnebonnende 3. Design controller

advanced three-position controller

KU LEUVEN

More intelligent flood regulation required!

Not effective

Model Predictive Control?

What is Model Predictive Control?

Why Model Predictive Control?

- Constraints incorporation
- Use of (approximate) process model: optimal solution for entire river system
- Prediction window + process model: rain predictions
- Objective function + constraints: set-point control together with flood control
- River systems have relatively slow dynamics

→ MPC is suitable for flood control of river systems

- Social relevance
- Modelling framework
- Model Predictive Control
- Conclusions

White box modelling

Dynamics of a single reach: The Saint-Venant equations

> conservation of mass conservation of momentum

$$
\frac{\partial A}{\partial h} \frac{\partial h}{\partial t} + \frac{\partial Q}{\partial z} = 0
$$

$$
\frac{\partial Q}{\partial t} + \frac{\partial Q}{\partial z} \frac{Q^2}{A} + gA \frac{\partial h}{\partial z} + gA(S_f - S_0) = 0
$$

with

A the cross-sectional flow area (m^2) Q water discharge (m^3/s) h water depth (m) S_0 bed slope S_f friction slope

Dynamics of a single reach: The resistance law

The resistance law of Manning:

$$
S_{\rm f} = n_{\rm mann}^2 \frac{Q|Q|}{A^2 R^{1/3}}
$$

Dynamics of a single reach: The resistance law

The resistance law of Manning:

Boundary conditions for a single reach

• Given upstream/downstream discharge

 $Q^{(i)}(0,t) = Q_{\text{up}}(t)$ $Q^{(i)}(L^{(i)}, t) = Q_{\text{down}}(t)$

KU L

Boundary conditions connecting reaches

• Hydraulic structures:

$$
Q_{\text{gate}}(t) = \tilde{f}\left(c(t), h_{\text{up}}(t), h_{\text{down}}(t)\right)
$$

Boundary conditions connecting reaches

 \circ Vertical sluice: $Q_{\text{gate}} = C_{\text{D}}(t)wc(t)\sqrt{2gh_{\text{up}}(t)}$

Boundary conditions connecting reaches

• Junctions

$$
h^{(1)}(L^{(1)},t) = h^{(2)}(0,t),
$$

\n
$$
Q^{(1)}(L^{(1)},t) + Q_{\text{gate}}(t) = Q^{(2)}(0,t),
$$

\n
$$
Q^{(3)}(L^{(3)},t) = Q_{\text{gate}}(t),
$$

\n
$$
Q_{\text{gate}}(t) = \tilde{f}\left(c^{(\text{gate})}(t), h^{(3)}(L^{(3)},t), h^{(2)}(0,t)\right)
$$

Reservoirs

Two options

• Saint-Venant equations

• Model as a tank

$$
dV_{\text{res}}/dt = Q^{(1)}(L^{(1)}, t) + Q_{\text{gate}}(t) - Q^{(2)}(0, t)
$$

The hydrodynamic model of the Demer

White box modelling

Numerical simulator

• For every reach:

Numerical simulator

• For PDE 2:

Ē

$$
\frac{\partial Q}{\partial t} + \left(\frac{\partial Q^2}{\partial z} + g \underline{A} \frac{\partial h}{\partial z} + g \underline{A} (S_f - S_0) = 0
$$
\n
$$
\frac{\partial}{\partial z} \left(\frac{Q^{(i)^2}}{A^{(i)}}\right)_{j,k} \simeq \begin{cases} \frac{1}{\Delta z} \left(\left(\frac{Q^{(i)^2}}{A^{(i)}}\right)_{j+1,k+\theta} - \left(\frac{Q^{(i)^2}}{A^{(i)}}\right)_{j,k+\theta} \right) & Q_{j,k}^{(i)} < 0, \\ \frac{1}{\Delta z} \left(\left(\frac{Q^{(i)^2}}{A^{(i)}}\right)_{j,k+\theta} - \left(\frac{Q^{(i)^2}}{A^{(i)}}\right)_{j-1,k+\theta} \right) & Q_{j,k}^{(i)} \ge 0. \end{cases}
$$

$$
\int \int f\left(h^{(i)}(t_{k+1}), h^{(i)}(t_k), q^{(i)}(t_{k+1}), q^{(i)}(t_k)\right) = \mathbf{0}_{n_h^{(i)}+n_Q^{(i)}-2}
$$

KU LEUVEN

Use similar procedure for boundary conditions…

White box modelling

Approximate model

- Goal: find an approximate model that is accurate enough but with a low complexity
- Linear state space model:

W

$$
\mathbf{x}(k+1) = \tilde{\mathbf{A}}\mathbf{x}(k) + \tilde{\mathbf{B}}\mathbf{u}(k) + \tilde{\mathbf{B}}\mathbf{d}(k) + \tilde{\mathbf{\beta}}
$$
\nith

\n
$$
\mathbf{x}(k) = \mathbf{h}(\mathbf{\Theta}(\mathbf{a}(k)),
$$
\n
$$
\mathbf{d}(k) = [Q_{\mathsf{Dem}}(k); Q_{\mathsf{Man}}(k)]
$$
\nif

\n
$$
\mathbf{d}(k) = [Q_{\mathsf{Dem}}(k); Q_{\mathsf{Man}}(k)]
$$

KUL 15 V

Approximate model

• Linear-Nonlinear model:

$$
\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) + \mathbf{F}\mathbf{d}(k) + \beta
$$

$$
Q_{\text{gate}}^{(m)}(k) = \tilde{f}\left(c^{(m)}(k), h_{\text{up}}^{(m)}(k), h_{\text{down}}^{(m)}(k)\right), \text{ for } m = A, D, K7
$$

with

 $\mathbf{x}(k) = [\mathbf{h}(k); \mathbf{q}(k)]$, $\label{eq:u_k} \mathbf{u}(k) = \left[Q_{\mathsf{gate}}^{(A)}(k); Q_{\mathsf{gate}}^{(D)}(k); Q_{\mathsf{gate}}^{(K7)}(k) \right],$ $\mathbf{d}(k) = [Q_{\mathsf{Dem}}(k); Q_{\mathsf{Man}}(k)]$

- · Social relevance
- Modelling framework
- Model Predictive Control
- Conclusions

Model Predictive Control

- o Set-point control for h_{up} and reservoir
	- \circ Flood control + respect safety limits and flood limits
	- o Recovery of used buffer capacity
- Limitations:
	- \circ Physical limits for gate positions: $\underline{\mathbf{c}}, \overline{\mathbf{c}}, \mathbf{\Delta}_c$
	- \circ Only h_{up} , h_{s} and h_{down} are measured

 $Q_{\rm Dem}$

Model Predictive Control

Model Predictive Control: Approximate model

Use LN-model

but work only with linear part inside the optimization problem! **→ optimize over gate discharges**

KU

Model Predictive Control: The optimization problem

$$
\min_{\mathbf{u},\mathbf{x},\xi,\zeta}\sum_{j=1}^{N_{\rm P}}||\mathbf{x}(j)-\mathbf{r}_{x}||_{\mathbf{W}}^{2} + \sum_{j=0}^{N_{\rm P}-1}||\mathbf{u}(j)-\mathbf{u}(j-1)||_{\mathbf{R}}^{2} +\n+ \sum_{j=0}^{N_{\rm P}-1}||\mathbf{u}(j)-\mathbf{r}_{u}||_{\mathbf{U}}^{2} + ||\xi||_{\mathbf{S}}^{2} + \mathbf{s}^{\mathsf{T}}\xi + ||\zeta||_{\mathbf{V}}^{2} + \mathbf{v}^{\mathsf{T}}\zeta\n\text{s.t. } \mathbf{x}(0) = \hat{\mathbf{x}},\n\mathbf{x}(j+1) = \mathbf{A}\mathbf{x}(j) + \mathbf{B}\mathbf{u}(j) + \mathbf{F}\mathbf{d}(j) + \tilde{\beta}(j), \qquad j = 0, ..., N_{\rm P}-1\n\underline{\mathbf{u}}(j) \leq \mathbf{u}(j) \leq \overline{\mathbf{u}}(j), \qquad j = 0, ..., N_{\rm P}-1\n\mathbf{u}(-1) = \mathbf{u}_{\rm prev},\n\text{for } i = 1, ..., 5:\n\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \leq \mathbf{M}^{(i)}\mathbf{h}_{\max,1}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\xi_i, \qquad j = 1, ..., N_{\rm P}
$$
\n
$$
\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \leq \mathbf{M}^{(i)}\mathbf{h}_{\max,2}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\zeta_i, \qquad j = 1, ..., N_{\rm P}
$$
\n
$$
h^{\text{(schulen)}}(j) \leq h_{\max,1}^{(\text{schulen})} + \eta(j)\zeta_6, \qquad j = 1, ..., N_{\rm P}
$$
\n
$$
h^{\text{(schulen)}}(j) \leq h_{\max,2}^{(\text{schulen})} + \eta(j)\zeta_6,
$$
\n
$$
j = 1, ..., N_{\rm P}
$$

 $\zeta \geq 0$

Model Predictive Control: Flood control and set-point control $\min_{\mathbf{u},\mathbf{x},\xi,\zeta} \sum_{i=1}^{N\mathsf{P}} \|\mathbf{x}(j)-\mathbf{r}_x\|_{\mathbf{W}}^2 + \sum_{i=0}^{N\mathsf{P}-1} \|\mathbf{u}(j)-\mathbf{u}(j-1)\|_{\mathbf{R}}^2 +$ + \sum $\|u(j) - r_u\|_{U}^{2} + \|\xi\|_{S}^{2} + s^{T}\xi + \|\zeta\|_{V}^{2} + v^{T}\zeta$ s.t. $\mathbf{x}(0) = \hat{\mathbf{x}},$ $$ $i=0,\ldots,N_P-1$ $\underline{\mathbf{u}}(j) \leq \underline{\mathbf{u}}(j) \leq \overline{\mathbf{u}}(j),$ $i = 0, ..., N_{P} - 1$ $\mathbf{u}(-1) = \mathbf{u}_{\text{prev}},$ for $i = 1, ..., 5$: $\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \leq \mathbf{M}^{(i)}\mathbf{h}_{\text{max},1}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\xi_i,$ $j=1,\ldots,N_{\textsf{P}}$ $\|\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j)\| \leq \mathbf{M}^{(i)}\mathbf{h}^{(i)}_{\max,2} + \mathbf{1}_{n^{(i)}_{\min}}\cdot \eta(j)\zeta_i,$ $j=1,\ldots,N_P$ $h^{(\text{schulen})}(j) \leq h^{(\text{schulen})}_{\text{max}.1} + \eta(j)\xi_6,$ $i=1,\ldots,N_P$ $h^{(\text{schulen})}(j) \leq h^{(\text{schulen})}_{\text{max},2} + \eta(j)\zeta_6,$ $i=1,\ldots,N_P$ $\xi > 0$, KU I $\zeta \geq 0$

Model Predictive Control: Ensure feasibility of QP
 $\min_{\mathbf{u},\mathbf{x},\boldsymbol{\xi},\boldsymbol{\zeta}} \sum_{i=1}^{N_{\text{P}}} ||\mathbf{x}(j) - \mathbf{r}_{x}||_{\mathbf{W}}^{2} + \sum_{i=0}^{N_{\text{P}}-1} ||\mathbf{u}(j) - \mathbf{u}(j-1)||_{\mathbf{R}}^{2} +$ N_P-1

+ \sum $\|u(j) - r_u\|_{U}^{2} + \|\xi\|_{S}^{2} + s^{T}\xi + \|\zeta\|_{V}^{2} + v^{T}\zeta$ s.t. $\mathbf{x}(0) = \hat{\mathbf{x}},$ $$ $i=0,\ldots,N_P-1$ $\underline{\mathbf{u}}(j) \leq \underline{\mathbf{u}}(j) \leq \overline{\mathbf{u}}(j),$ $i = 0, ..., N_{P} - 1$ $\mathbf{u}(-1) = \mathbf{u}_{\text{prev}},$ for $i = 1, ..., 5$: $\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \leq \mathbf{M}^{(i)}\mathbf{h}_{\text{max},1}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\xi_i,$ $j=1,\ldots,N_{\textsf{P}}$ $\|\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j)\| \leq \mathbf{M}^{(i)}\mathbf{h}^{(i)}_{\max,2} + \mathbf{1}_{n^{(i)}_{\min}}\cdot \eta(j)\zeta_i,$ $j=1,\ldots,N_P$ $h^{(\text{schulen})}(j) \leq h^{(\text{schulen})}_{\text{max}.1} + \eta(j)\xi_6,$ $i=1,\ldots,N_P$ $h^{(\text{schulen})}(j) \leq h^{(\text{schulen})}_{\text{max},2} + \eta(j)\zeta_6,$ $i=1,\ldots,N_P$ $\xi > 0$, KU $\zeta \geq 0$

Model Predictive Control:

Control objectives \rightarrow weighting matrices

$$
\min_{\mathbf{u}, \mathbf{x}, \boldsymbol{\xi}, \boldsymbol{\zeta}} \sum_{j=1}^{N_{\text{p}}-1} \|\mathbf{x}(j) - \mathbf{r}_{x}\|_{\mathbf{W}}^{2} + \sum_{j=0}^{N_{\text{p}}-1} \|\mathbf{u}(j) - \mathbf{u}(j-1)\|_{\mathbf{R}}^{2} + \sum_{j=0}^{N_{\text{p}}-1} \|\mathbf{u}(j) - \mathbf{r}_{u}\|_{\mathbf{U}}^{2} + \|\boldsymbol{\xi}\|_{\mathbf{S}}^{2} + \mathbf{s}^{\mathsf{T}}\boldsymbol{\xi} + \|\boldsymbol{\zeta}\|_{\mathbf{V}}^{2} + \mathbf{V}^{\mathsf{T}}\boldsymbol{\zeta}
$$

s.t. $\mathbf{x}(0) = \hat{\mathbf{x}},$

 $\xi \geq 0,$

 $\zeta \geq 0$

for $i = 1, ..., 5$:

$$
\begin{aligned}\n\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) &\leq \mathbf{M}^{(i)}\mathbf{h}_{\text{max},1}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\xi_i, & j &= 1, \dots, N_{\text{P}} \\
\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) &\leq \mathbf{M}^{(i)}\mathbf{h}_{\text{max},2}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\zeta_i, & j &= 1, \dots, N_{\text{P}} \\
h^{\text{(schulen)}}(j) &\leq h_{\text{max},1}^{(\text{schulen})} + \eta(j)\xi_6, & j &= 1, \dots, N_{\text{P}} \\
h^{\text{(schulen)}}(j) &\leq h_{\text{max},2}^{(\text{schulen})} + \eta(j)\zeta_6, & j &= 1, \dots, N_{\text{P}}\n\end{aligned}
$$

Model Predictive Control:

Limits on gate discharges & model update

$$
\min_{\mathbf{u},\mathbf{x},\xi,\zeta}\sum_{j=1}^{N_{\rm P}}\|\mathbf{x}(j)-\mathbf{r}_{x}\|_{\mathbf{W}}^{2}+\sum_{j=0}^{N_{\rm P}-1}\|\mathbf{u}(j)-\mathbf{u}(j-1)\|_{\mathbf{R}}^{2}+\n+ \sum_{j=0}^{N_{\rm P}-1}\|\mathbf{u}(j)-\mathbf{r}_{u}\|_{\mathbf{U}}^{2}+\|\xi\|_{\mathbf{S}}^{2}+\mathbf{s}^{\mathsf{T}}\xi+\|\zeta\|_{\mathbf{V}}^{2}+\mathbf{V}^{\mathsf{T}}\zeta
$$
\n
$$
\text{s.t. } \mathbf{x}(0) = \hat{\mathbf{x}},
$$
\n
$$
\mathbf{x}(j+1) = \mathbf{A}\mathbf{x}(j) + \mathbf{B}\mathbf{u}(j) + \mathbf{F}\mathbf{d}(j) + \tilde{\boldsymbol{\beta}}(j), \qquad j = 0, \ldots, N_{\rm P}-1
$$
\n
$$
\underline{\mathbf{u}}(j) \le \mathbf{u}(j) \le \overline{\mathbf{u}}(j), \qquad j = 0, \ldots, N_{\rm P}-1
$$
\n
$$
\mathbf{u}(-1) = \mathbf{u}_{\text{prev}},
$$
\nfor $i = 1, \ldots, 5$:\n
$$
\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \le \mathbf{M}^{(i)}\mathbf{h}_{\text{max},1}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}}, \eta(j)\xi_i, \qquad j = 1, \ldots, N_{\rm P}
$$
\n
$$
h^{(\text{schulen})}(j) \le h_{\text{max},2}^{(\text{schulen})} + \eta(j)\xi_6, \qquad j = 1, \ldots, N_{\rm P}
$$
\n
$$
h^{(\text{schulen})}(j) \le h_{\text{max},2}^{(\text{schulen})} + \eta(j)\zeta_6, \qquad j = 1, \ldots, N_{\rm P}
$$
\n
$$
\xi \ge 0,
$$
\n
$$
\zeta > 0
$$
\nKULEU

Model Predictive Control: $\mathbf{c}, \overline{\mathbf{c}}, \mathbf{\Delta}_c \Rightarrow \mathbf{u}(j), \overline{\mathbf{u}}(j)$

At time t_k : $\mathbf{c}(t_{k-1})$, $\mathbf{h}(t_k)$ and $\mathbf{q}(t_k)$ are known. For gate m :

$$
\underline{u}^{(m)}(k) = \tilde{f}\left(c^{(m)}(k-1) + \Delta_c, h_{\text{up}}(k), h_{\text{down}}(k)\right),
$$

$$
\overline{u}^{(m)}(k) = \tilde{f}\left(c^{(m)}(k-1) - \Delta_c, h_{\text{up}}(k), h_{\text{down}}(k)\right).
$$

For $u^{(m)}(k+1)$, $\overline{u}^{(m)}(k+1)$?

- $\ln (t_{k+1})$? use (non)linear model to predict $\mathbf{x}(k+1)$ based on $\mathbf{x}(k)$, $\mathbf{d}(k)$ and $\mathbf{u}_{\text{opt}}(k)$
- $\mathbf{c}(t_k)$? use $\mathbf{u}_{\text{opt}}(k)$ but prevent uncontrollability of gates!

Model Predictive Control: Model update

• Update linear model to match predictions with nonlinear model:

$$
\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k) + \mathbf{D}\mathbf{d}(k) + \tilde{\boldsymbol{\beta}}(k)
$$

with

$$
\tilde{\boldsymbol{\beta}}(k) = \boldsymbol{\beta} + (\mathbf{x}_{\text{nonlin}}(k+1) - \mathbf{x}_{\text{lin}}(k+1))
$$

Model Predictive Control: Buffer capacity recovery $\min_{\mathbf{u},\mathbf{x},\xi,\zeta}\sum_{i=1}^{N_{\rm P}}\|\mathbf{x}(j)-\mathbf{r}_{x}\|_{\mathbf{W}}^{2}+\sum_{i=0}^{N_{\rm P}-1}\|\mathbf{u}(j)-\mathbf{u}(j-1)\|_{\mathbf{R}}^{2}+$ N_P-1 + \sum $\|u(j) - r_u\|_{\mathbf{U}}^2$ + $\|\xi\|_{\mathbf{S}}^2$ + $\mathbf{s}^{\mathsf{T}}\xi$ + $\|\zeta\|_{\mathbf{V}}^2$ + $\mathbf{v}^{\mathsf{T}}\zeta$ s.t. $\mathbf{x}(0) = \hat{\mathbf{x}},$ $$ $i=0,\ldots,N_P-1$ $i = 0, \ldots, N_{P} - 1$ $\underline{\mathbf{u}}(j) \leq \underline{\mathbf{u}}(j) \leq \overline{\mathbf{u}}(j),$ $\mathbf{u}(-1) = \mathbf{u}_{\text{prev}},$ for $i = 1, ..., 5$: $\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \leq \mathbf{M}^{(i)}\mathbf{h}^{(i)}_{\max,1} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\xi_i,$ $j=1,\ldots,N_{\textsf{P}}$ $\|\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j)\| \leq \mathbf{M}^{(i)}\mathbf{h}^{(i)}_{\max,2} + \mathbf{1}_{n^{(i)}_{\text{con}}} \cdot \eta(j)\zeta_i,$ $j=1,\ldots,N_P$ $h^{(\text{schulen})}(j) \leq h^{(\text{schulen})}_{\text{max}.1} + \eta(j)\xi_6,$ $j=1,\ldots,N_P$ $h^{(\text{schulen})}(j) \leq h^{(\text{schulen})}_{\text{max }2} + \eta(j)\zeta_6,$ $i=1,\ldots,N_P$ $\xi > 0$, KU $\zeta \geq 0$

Model Predictive Control:

Constraint selection

↘

$$
\min_{\mathbf{u},\mathbf{x},\xi,\zeta}\sum_{j=1}^{N_{\rm P}}\|\mathbf{x}(j)-\mathbf{r}_{x}\|_{\mathbf{W}}^{2}+\sum_{j=0}^{N_{\rm P}-1}\|\mathbf{u}(j)-\mathbf{u}(j-1)\|_{\mathbf{R}}^{2}+\sum_{j=0}^{N_{\rm P}-1}\|\mathbf{u}(j)-\mathbf{r}_{u}\|_{\mathbf{U}}^{2}+\|\xi\|_{\mathbf{S}}^{2}+\mathbf{s}^{\mathsf{T}}\xi+\|\zeta\|_{\mathbf{V}}^{2}+\mathbf{V}^{\mathsf{T}}\zeta
$$
\n
$$
\text{s.t. } \mathbf{x}(0) = \hat{\mathbf{x}},
$$
\n
$$
\mathbf{x}(j+1) = \mathbf{A}\mathbf{x}(j) + \mathbf{B}\mathbf{u}(j) + \mathbf{F}\mathbf{d}(j) + \tilde{\boldsymbol{\beta}}(j), \qquad j=0,\ldots,N_{\rm P}-1
$$
\n
$$
\underline{\mathbf{u}}(j) \le \mathbf{u}(j) \le \overline{\mathbf{u}}(j), \qquad j=0,\ldots,N_{\rm P}-1
$$
\n
$$
\mathbf{u}(-1) = \mathbf{u}_{\text{prev}},
$$
\nfor $i=1,\ldots,5$:
\n
$$
\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \le \mathbf{M}^{(i)}\mathbf{h}_{\text{max},1}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\xi_{i}, \qquad j=1,\ldots,N_{\rm P}
$$
\n
$$
\mathbf{M}^{(i)}\mathbf{h}^{(i)}(j) \le \mathbf{M}^{(i)}\mathbf{h}_{\text{max},2}^{(i)} + \mathbf{1}_{n_{\text{con}}^{(i)}} \cdot \eta(j)\zeta_{i}, \qquad j=1,\ldots,N_{\rm P}
$$
\n
$$
h^{(\text{schulen})}(j) \le h_{\text{max},1}^{(\text{schulen})} + \eta(j)\xi_{6}, \qquad j=1,\ldots,N_{\rm P}
$$
\n
$$
h^{(\text{schulen})}(j) \le h_{\text{max},2}^{(\text{schulen})} + \eta(j)\zeta_{6}, \qquad j=1,\
$$

JEN

Model Predictive Control

Kalman Filter

Estimate the entire state of the river system based on the three measured water levels together with the control actions:

 $\hat{\mathbf{x}}(k+1) = \mathsf{L}(\mathbf{\Delta y}(k) - \mathbf{\Delta} \hat{\mathbf{y}}(k)) + \mathbf{x}_{\text{nonlin}}(k+1)$ $\Delta \hat{\mathbf{x}}(k+1) = \mathbf{L} \left(\Delta \mathbf{y}(k) - \Delta \hat{\mathbf{y}}(k) \right) + \mathbf{A} \Delta \hat{\mathbf{x}} \overline{\mathbf{x}}$ $\Delta \hat{\mathbf{y}}(k) = \mathbf{C} \Delta \hat{\mathbf{x}}(k)$

Model Predictive Control: The proof of the pudding

Simulation results

Simulation results

Outline

- · Social relevance
- Modelling framework
- **Model Predictive Control** \bullet
- Conclusions

Conclusions

Objective: Can Model Pre living Control be used for set-point control and flood control of river systems?

Good control performance due to

- incorporation of flood levels as (soft) constraints
- minimization of the set-point deviations
- incorporation of rain predictions via process model and prediction window

• fast buffer capacity recovery Important: smart choice of control variables \rightarrow linear MPC Kalman filter as state estimator

Future research opportunities

• Apply to larger part of the Demer

Distributed MPC – Hierarchical MPC ?

- Plant-model mismatch
- Uncertainty on weather predictions

Dynamics of a single reach: The Saint-Venant equations

Assumptions:

- The vertical pressure distribution is hydrostatic.
- The channel bottom slope is small: the flow depth measured normal to the channel bottom or measured vertically are approximately the same.
- The bedding of the channel is stable: the bed elevation does not change with time.
- The flow is assumed to be one-dimensional (flow velocity over the entire channel is uniform + water level across the section is horizontal).
- The frictional bed resistance is the same in unsteady flow as in steady flow meaning that steady state resistance laws can be used to evaluate the average boundary shear stress.

Numerical simulator: Δz , Δt , θ

• Numerical scheme is unconditional stable if

 $\theta \in \left[\frac{1}{2},1\right]$

• Accuracy affected by Courant number

$$
C_{\mathsf{n}} = \frac{|v| \pm \sigma}{\Delta z/\Delta t}
$$

KUL

Adaptations to MPC scheme: Approximate model

• Use (linear part of) LN-model … but first approximate the irregular profiles with trapezoidal cross sections

water level (m)

Model Predictive Control & artificial test example

Simulation results

 $\ensuremath{\mathrm{LN}\text{-}\mathrm{MPC}}$ --- $\ensuremath{\mathrm{LN}\text{-}\mathrm{MPC}}$ + Kalman

Simulation results

